Search results for "Amorphous carbon"
showing 10 items of 27 documents
Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films
2016
Amorphous carbon (a-C) films with varying oxygen content were deposited by closed-field unbalanced magnetron sputtering with the aim to understand the effect of oxygen on the structural and physical properties of the films and subsequently correlate these changes with electrochemical properties. The a-C films were characterized by transmission electron microscopy, helium-ion microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and time-of-flight elastic recoil detection analysis. The electrochemical properties were studied by electrochemical impedance spectroscopy and cyclic voltammetry with several redox systems (Ru(NH3)62+/3+, Fe(CN)64−/3−, dopamine an…
Structure and chemical bonds in reactively sputtered black Ti–C–N–O thin films
2011
The evolution of the nanoscale structure and the chemical bonds formed in Ti–C–N–O films grown by reactive sputtering were studied as a function of the composition of the reactive atmosphere by increasing the partial pressure of an O2+N2 gas mixture from 0 up to 0.4 Pa, while that of acetylene (carbon source) was constant. The amorphisation of the films observed by transmission electron microscopy was confirmed by micro- Raman spectroscopy, but it was not the only effect associated to the increase of the O2+N2 partial pressure. The chemical environment of titanium and carbon, analysed by X-ray photoemission spectroscopy, also changes due to the higher affinity of Ti towards oxygen and nitro…
Nucleation mechanism for the direct graphite-to-diamond phase transition
2011
Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleat…
Room-Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Io…
2019
Here, an unidentified type of micropillar growth is described at room temperature during conventional direct-current magnetron sputtering (DC-MS) deposition from a Li4Ti5O12+graphite sputter target under negative substrate bias and high operating pressure. These fabricated carbon-Li2O-TiO2 microstructures consisting of various Li4Ti5O12/Li2TiO3/LixTiO2 crystalline phases are demonstrated as an anode material in Li-ion microbatteries. The described micropillar fabrication method is a low-cost, substrate independent, single-step, room-temperature vacuum process utilizing a mature industrial complementary metal-oxide-semiconductor (CMOS)-compatible technology. Furthermore, tentative considerat…
Preparation of magnetron sputtered thin cerium oxide films with a large surface on silicon substrates using carbonaceous interlayers.
2013
The study focuses on preparation of thin cerium oxide films with a porous structure prepared by rf magnetron sputtering on a silicon wafer substrate using amorphous carbon (a-C) and nitrogenated amorphous carbon films (CNx) as an interlayer. We show that the structure and morphology of the deposited layers depend on the oxygen concentration in working gas used for cerium oxide deposition. Considerable erosion of the carbonaceous interlayer accompanied by the formation of highly porous carbon/cerium oxide bilayer systems is reported. Etching of the carbon interlayer with oxygen species occurring simultaneously with cerium oxide film growth is considered to be the driving force for this effec…
Depletion of carbon nanotube depositions and tube realignment in the spreading of sessile drops
2015
Abstract We studied spreading of drops of water and dilute alcohol on multiwall carbon nanotube (MWNT) depositions. These deposits consisted of individual arc-discharge synthesized MWNTs and irregular amorphous carbon nanoparticles on hydrophilically rendered silicon substrates. The mobile circular contact line of a spreading drop created an annular shape on the deposit, where some of the MWNTs and the amorphous nanoparticles in particular were largely depleted. The effect was strongly dependent on the hydrophilicity of the substrate. Most of the MWNTs were not only left within the annuli, but were also apparently reoriented by their interaction with the passing contact line. Our results im…
Inverse simulated annealing for the determination of amorphous structures
2013
We present a new and efficient optimization method to determine the structure of disordered systems in agreement with available experimental data. Our approach permits the application of accurate electronic structure calculations within the structure optimization. The new technique is demonstrated within density functional theory by the calculation of a model of amorphous carbon.
Improvement of interaction in and properties of PMMA-MWNT nanocomposites through microwave assisted acid treatment of MWNT
2013
Soluble derivatives of multi-walled carbon nanotubes (MWNT) embedded in a poly(methylmethacrylate) (PMMA) matrix forming thick, homogeneous and transparent nanocomposites, were prepared and characterized. A new photo-assisted method using microwaves, to purify the MWNTs from amorphous carbon and synthesis catalyst clusters, was tested in a sulphonitric mix. This method shortened the processing time compared to other methods. Pristine and functionalized MWNTs were introduced into the MMA, then in situ photo-polymerized. Transmission electron microscopy (TEM) and X-ray diffractometry (XRD), as well as Fourier-transform infrared (FTIR), Raman and nuclear magnetic resonance (NMR) spectroscopy w…
Revealing lattice disorder, oxygen incorporation and pore formation in laser induced two-photon oxidized graphene
2019
Abstract Laser induced two-photon oxidation has proven to be a reliable method to pattern and control the level of oxidation of single layer graphene, which in turn allows the development of graphene-based electronic and optoelectronic devices with an all-optical method. Here we provide a full structural and chemical description of modifications of air-suspended graphene during the oxidation process. By using different laser irradiation doses, we were able to show via transmission electron microscopy, electron energy loss spectroscopy, electron diffraction and Raman spectroscopy how graphene develops from its pristine form up to a completely oxidized, porous and amorphous carbon layer. Furt…
Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition.
2010
We have prepared 2D arrays of nanodots embedded in an insulating matrix by means of focused-electron-beam-induced deposition using the W(CO)(6) precursor. By varying the deposition parameters, i.e. the electron beam current and energy and the raster constant, we obtain an artificial granular material with tunable electrical properties. The analysis of the temperature dependence of the conductivity and of the current-voltage characteristic suggests that the transport mechanism is governed by electron tunneling between artificial grains. In order to understand the nature of the granularity and thus the microstructural origin of the electronic transport behavior, we perform TEM and micro-Raman…